Letysite.ru

IT Новости с интернет пространства
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двойственная задача линейного программирования онлайн калькулятор

Калькулятор симплекс-метода

Выполнено действий: 126

Как пользоваться калькулятором

  • Задайте количество переменных и ограничений
  • Введите коэффициенты целевой функции
  • Введите коэффициенты ограничений и выберите условия (≤, = или ≥)
  • Выберите тип решения
  • Нажмите кнопку «Решить»

Что умеет калькулятор симплекс-метода

  • Решает основную задачу линейного программирования
  • Позволяет получить решение с помощью основного симплекс-метода и метода искусственного базиса
  • Работает с произвольным количеством переменных и ограничений

Что такое симплекс-метод

Задача линейного программирования — это задача поиска неотрицательных значений параметров, на которых заданная линейная функция достигает своего максимума или минимума при заданных линейных ограничениях.

Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве. Алгоритм является универсальным методом, которым можно решить любую задачу линейного программирования.

Если вам тоже ничего не понятно из этого определения, то вы на верном пути. Чаще всего статьи про симплекс-метод очень сильно углубляются в дебри теории задачи линейного программирования, из-за чего очень легко потерять суть и так ничего и не понять. Мы постараемся описать алгоритм симплекс-метода так, чтобы показать, что в нём нет ничего страшного и на самом деле он весьма простой. Но сначала нам всё-таки потребуется ввести несколько определений.

Целевая функция — функция, максимум (или минимум) которой нужно найти. Представляет собой сумму произведений коэффициентов на значения переменных: F = c1·x1 + c2·x2 + . + cn·xn

Ограничение — условие вида a1·x1 + a2·x2 + . + an·xn v b , где вместо v ставится один из знаков: ≤, = или ≥

План — произвольный набор значений переменных x1 . xn.

Алгоритм решения основной задачи ЛП симплекс-методом

Пусть в задаче есть m ограничений, а целевая функция заивисит от n основных переменных. Первым делом необходимо привести все ограничения к каноническому виду — виду, в котором все условия задаются равенствами. Для этого предварительно все неравенства с ≥ умножаются на -1, для получения неравенств с ≤.

Чтобы привести ограничения с неравенствами к каноническому виду, для каждого ограничения вводят переменную, называемую дополнительной с коэффициентом 1. В ответе эти переменные учитываться не будут, однако сильно упростят начальные вычисления. При этом дополнительные переменные являются базисными, а потому могут быть использованы для формирования начального опорного решения.

Формирование начального базиса

После того как задача приведена к каноническому виду, необходимо найти начальный базис для формирования первого опорного решения. Если в процессе приведения были добавлены дополнительные переменные, то они становятся базисными.

Иначе необходимо выделить среди коэффициентов ограничений столбец, который участвует в формировании единичной матрицы в заданной строке (например, если требуется определить вторую базисную переменную, то необходимо искать столбец, в котором второе число равно 1, а остальные равны нулю). Если такой столбец найден, то переменная, соответствующая этому столбцу, становится базисной.

В противном случае можно поискать столбец, в котором все значения кроме числа в заданной строке равны нулю, и, если он будет найден, то разделить все значения строки на число, стоящее на пересечении этих строки и столбца, тем самым образовав столбец, участвующий в формировании единичной матрицы.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x6
Столбец 4 является частью единичной матрицы. Переменная x4 входит в начальный базис
В пятом столбце все значения кроме третьего равны нулю. Поэтому в качестве третьей базисной переменной берём x5 , предварительно разделив третью строку на 2.
Симплекс-таблица

Решение двойственной задачи

Здесь мы рассмотрим вопрос, как из решения прямой задачи, получить решение двойственной задачи.

Теоремы двойственности

Первая теорема двойственности

Если одна из пары двойственных задач имеет оптимальное решение, то и двойственная задача имеет оптимальное решение. При этом значения целевых функций прямой и двойственной задачи, для оптимальных решений, равны друг другу.

Если одна из пары двойственных задач не имеет решения вследствие неограниченности целевой функции, то двойственная задача не имеет решения вследствие несовместимости системы ограничений.

Вторая теорема двойственности

Пусть мы имеем симметричную пару двойственных задач (1) и (2):
(1.1) ;
(1.2)
(2.1) ;
(2.2)
Для того чтобы допустимые решения и являлись оптимальными решениями двойственных задач (1) и (2), необходимо и достаточно, чтобы выполнялись следующие равенства:
(3) , .
(4) , ;

Для наглядности, выпишем равенства (3) и (4) в развернутом виде:
(3.1)
(3.2)

Метод решения двойственной задачи

Применяя теоремы двойственности, можно получить решение двойственной задачи из решения прямой. Опишем метод решения двойственной задачи.

Пусть мы нашли решение прямой задачи (1) с оптимальным значением целевой функции и с оптимальным планом . Подставим найденные значения в систему ограничений (1.2). Тогда если -е неравенство не является равенством, то есть если
,
то, согласно (3.i),
.
Рассматривая все строки системы ограничений (1.2), мы найдем, что часть переменных двойственной задачи равна нулю.

Далее замечаем, что если , то, согласно (4.k), -я строка системы ограничений (2.2) является равенством:
.
Составив все строки системы ограничений (2.2), для которых , мы получим систему уравнений, из которой можно найти ненулевые значения переменных .

На основании первой теоремы двойственности, минимальное значение целевой функции
.

Если известно решение задачи (2), то аналогичным образом можно найти решение задачи (1).

Примеры решения двойственной задачи из решения прямой

Пример 1

Пусть дана задача линейного программирования:
;

Известно решение этой задачи:
; .

Составить двойственную задачу и получить ее решение из решения прямой.

Согласно первой теореме двойственности, оптимальное значение целевой функции равно
.

Применим вторую теорему двойственности. Подставим оптимальные значения переменных в систему ограничений прямой задачи.
(П1.1.1) ;
(П1.1.2) ;
(П1.1.3) ;
(П1.1.4) .
Поскольку первая и четвертая строки являются строгими неравенствами (не являются равенствами), то
и .

Поскольку и , то 2-я и 4-я строки двойственной задачи являются равенствами:

Подставим уже найденные значения и , имеем:

Двойственная задача имеет вид:
;

Пример 2

Дана задача линейного программирования:
(П2.1.1) ;
(П2.1.2)
Найти решение этой задачи, решив двойственную задачу графическим методом.

Решение задачи (П2.2) приводится на странице “Решение задач линейного программирования графическим методом”. Решение задачи (П2.2) имеет вид:
; .

Читать еще:  Ошибка 2003 при восстановлении iphone 6s

Согласно первой теореме двойственности, оптимальное значение целевой функции равно
.

Применим вторую теорему двойственности. Подставим оптимальные значения переменных в систему ограничений прямой задачи (П2.2).
;
;
.
Поскольку третья строка является строгим неравенством (не являются равенством), то
.

Поскольку и , то 1-я и 2-я строки двойственной задачи (П2.1) являются равенствами:

Подставим найденное значение .

Решение исходной задачи (П2.1) имеет вид:
; .

Автор: Олег Одинцов . Опубликовано: 27-08-2016

Решение двойственной задачи линейного программирования

С помощью данного онлайн-калькулятора можно получить:

  • решение двойственной задачи линейного программирования через решений прямой задачи (симплексным методом, по теореме двойственности);
  • оптимальный план двойственной задачи; оценки ресурсов (двойственные оценки);
  • определение дефицитных и недефицитных (избыточных) ресурсов;
  • изменение целевой функции при изменении параметров; обоснование эффективности оптимального плана;
  • анализ устойчивости двойственных оценок (предельное изменение bi, ci); анализ субоптимальных вариантов плана.
  • решение задачи о расшивке узких мест производства.
  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Основная идея теории двойственности: для каждой задачи линейного программирования (ЛП) существует некоторая задача ЛП, решение которой тесно связано с прямой. При этом:

  • матрица ограничений двойственной задачи (ДЗ) есть транспонированная матрица прямой задачи;
  • вектор «цен» для прямой задачи есть вектор правых частей ограничений задачи ДЗ и наоборот.

Общие правила составления двойственной задачи (более подробно):

Пример . Определим максимальное значение целевой функции F(X) = 3x1 +5x2 +4x3 при следующих условиях-ограничений.
0.1x1 + 0.2x2 + 0.4x3≤1100
0.05x1 + 0.02x2 + 0.02x3≤120
3x1 + x2 + 2x3≤8000

Решим прямую задачу симплексным методом.
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных.
0.1x1 + 0.2x2 + 0.4x3 + 1x4 + 0x5 + 0x6= 1100
0.05x1 + 0.02x2 + 0.02x3 + 0x4 + 1x5 + 0x6= 120
3x1 + 1x2 + 2x3 + 0x4 + 0x5 + 1x6= 8000
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.
Решим систему уравнений относительно базисных переменных: x4 , x5 , x6
Полагая, что свободные переменные равны 0, получим первый опорный план: X1 = (0,0,0,1100,120,8000)
Поскольку задача решается на максимум, то ведущий столбец выбирают по максимальному отрицательному числу и индексной строке. Все преобразования проводят до тех пор, пока не получатся в индексной строке положительные элементы.
Переходим к основному алгоритму симплекс-метода.

Посмотреть таблицу
Конец итераций: найден оптимальный план. Окончательный вариант симплекс-таблицы:

Решение двойственной задачи дает оптимальную систему оценок ресурсов.
Используя последнюю итерацию прямой задачи найдем, оптимальный план двойственной задачи.
Из теоремы двойственности следует, что Y = C*A -1 .
Составим матрицу A из компонентов векторов, входящих в оптимальный базис.

Определив обратную матрицу А -1 через алгебраические дополнения, получим:
Как видно из последнего плана симплексной таблицы, обратная матрица A -1 расположена в столбцах дополнительных переменных x4 , x5 , x6 .
Тогда Y = C*A -1 =
Оптимальный план двойственной задачи равен: y1 = 23.75, y2 = 12.5, y3 = 0
Z(Y) = 1100*23.75+120*12.5+8000*0 = 27625
Подставим оптимальный план прямой задачи в систему ограниченной математической модели:
0.1*250 + 0.2*5375 + 0.4*0 = 1100 = 1100
0.05*250 + 0.02*5375 + 0.02*0 = 120 = 120
3*250 + 1*5375 + 2*0 = 6125 0).
2-ое ограничение прямой задачи выполняется как равенство. Это означает, что 2-ый ресурс полностью используется в оптимальном плане, является дефицитным и его оценка согласно второй теореме двойственности отлична от нуля (y2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида израсходован не полностью. Значит, этот ресурс не является дефицитным и его оценка в оптимальном плане y3 = 0.
Таким образом, отличную от нуля двойственные оценки имеют лишь те виды ресурсов, которые полностью используются в оптимальном плане. Поэтому двойственные оценки определяют дефицитность ресурсов.
При постановке оптимальных двойственных оценок в систему ограничений двойственной задачи получим:
0.1*23.75 + 0.05*12.5 + 3*0 = 3 = 3
0.2*23.75 + 0.02*12.5 + 1*0 = 5 = 5
0.4*23.75 + 0.02*12.5 + 2*0 = 9.75 > 4
1-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 1-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x1>0).
2-ое ограничение двойственной задачи выполняется как равенство. Это означает, что 2-ый ресурс экономически выгодно использовать, а его использование предусмотрено оптимальным планом прямой задачи (x2>0).
3-ое ограничение выполняется как строгое неравенство, т.е. ресурс 3-го вида использовать экономически не выгодно. И действительно в оптимальном плане прямой задачи x3 = 0.
Величина двойственной оценки показывает, на сколько возрастает значение целевой функции при увеличении дефицитного ресурса на единицу.
Например, увеличении 1-го ресурса на 1 приведет к получению нового оптимального плана, в котором целевая функция возрастает на 23.75 и станет равной: F(x) = 27625 + 23.75 = 27648.75
Проведем анализ устойчивости оптимального плана и оценим степень влияния изменения ресурсов на значение целевой функции.
Пусть каждое значение параметра целевой функции изменится на ∆ сi. Найдем интервалы, при которых будет экономически выгодно использование ресурсов.
1-ый параметр целевой функции может изменяться в пределах:

-3.8 ≤ с1 ≤ 1
Таким образом, 1-параметр может быть уменьшен на 3.8 или увеличен на 1
Интервал изменения равен: [3-3.8; 3+1] = [-0.8;4]
Если значение c1 будет лежать в данном интервале, то оптимальный план не изменится.

2-ый параметр целевой функции может изменяться в пределах:

-0.5 ≤ с2 ≤ 9.5
Таким образом, 2-параметр может быть уменьшен на 0.5 или увеличен на 9.5
Интервал изменения равен: [5-0.5; 5+9.5] = [4.5;14.5]
Если значение c2 будет лежать в данном интервале, то оптимальный план не изменится.

Проведем анализ устойчивости двойственных оценок.
1-ый запас может изменяться в пределах:

-860 ≤ b1 ≤ 100
Таким образом, 1-ый запас может быть уменьшен на 860 или увеличен на 100
Интервал изменения равен: [1100-860; 1100+100] = [240;1200]
2-ый запас может изменяться в пределах:

-10 ≤ b2 ≤ 30
Таким образом, 2-ый запас может быть уменьшен на 10 или увеличен на 30
Интервал изменения равен: [120-10; 120+30] = [110;150]
Составим субоптимальные варианты плана с учетом изменений исходных данных модели (таблицы).
Пусть 2-ый ресурс увеличили на 50

Двойственный симплекс-метод решения задач линейного программирования

Метод, при котором вначале симплекс-методом решается одна из взаимно двойственных задач, а затем оптимум и оптимальное решение другой задачи находятся с помощью теорем двойственности, называется двойственным симплекс-методом.

Читать еще:  Ошибка прокси сервера что делать

Теорема 1 (Первая теорема двойственности). Если одна из взаимно двойственных задач имеет оптимальное решение, то его имеет и

другая, причем оптимальные значения их целевых функций равны:

. (7.1)

Если целевая функция исходной задачи не ограничена, то система ограничений двойственной задачи несовместна.

Примечание: утверждение, обратное по отношению ко второй части первой теоремы двойственности, в общем случае неверно.

Установим соответствие между переменными взаимно двойственных задач.

Теорема 2. Компоненты оптимального плана двойственной задачи (обладающие условием неотрицательности) равны абсолютным значениям коэффициентов при соответствующих переменных целевой функции исходной задачи, выраженной через свободные переменные ее оптимального решения.

Компоненты оптимального плана двойственной задачи (не ограниченные по знаку) равны значениям коэффициентов при соответствующих переменных целевой функции исходной задачи, выраженной через свободные переменные ее оптимального решения.

Теорема 3. Положительным (ненулевым) компонентам оптимального решения одной из задач симметричной двойственной пары соответствуют нулевые компоненты оптимального решения другой задачи, т.е. для любых и :

Теорема 4 (Третья теорема двойственности). Компоненты оптимального плана двойственной задачи равны значениям частных производных линейной функции по соответствующим аргументам, т.е.

. (7.2)

Экономическая интерпретация третьей теоремы двойственности: компоненты оптимального плана двойственной задачи показывают, на сколько денежных единиц изменится максимальная прибыль (выручка) от реализации продукции при изменении запаса соответствующего ресурса на одну единицу.

Пример 9.1. На основе решения примера 5.2 (файл «Алгоритм и примеры симплекс-метода») определим двойственным симплекс- методом оптимальное решение двойственной задачи.

Метод симплекса для чайников — описание с примером подробного решения

Понятие и алгоритм

Под симплексным методом понимается последовательный переход от одного базисного нахождения системы решений к другому. Эта перестановка повторяется до тех пор, пока переменная величина цели не достигнет своего наибольшего или наименьшего значения. Такой подход является универсальным, его можно использовать для решения любой задачи последовательного программирования.

Метод был разработан в 1947 году математиком из США Бернардом Данцигом. Предложенный способ оказался весьма эффективным для решения задач, связанных с оптимизацией использования ограниченных ресурсов. То есть он позволяет оценить и откорректировать параметры системы, а также получить качественные аналитические результаты.

Существует два подхода решения задачи:

Первый можно использовать для оптимизационного решения двухмерных задач. Например, существует два производственных цикла по сборке ящиков. Выпуск товара характеризуется ограничением в поставках древесины и временем формовки изделия. Для одного необходимо 30 досок, а для другого — 40. Поставщики доставляют в неделю 2 тыс. единиц материала. Первый ящик собирается за 15 минут, а второй — за 30. Нужно определить, какое количество ящиков необходимо производить за неделю на первом конвейере и на втором. При этом первое изделие приносит 10 рублей прибыли, а второе — пять. Время изготовление ограничено 160 часами.

Решение заключается в принятии за Х1 и Х2 количество выпущенных ящиков. Затем — в нахождении максимальной еженедельной прибыли и описании процесса ограничения в виде уравнения.

Это типовая двухмерная задача, условия неотрицательности которой определяются границами прямых: 30*Х1 + 4 0*Х 2 ≤ 2000 (для досок) и 20*Х 1 ≤ 50*Х 2 = 1600 (для сборки). Отложив по оси ординат Х1, а Х2 по абсцисс, и указав на них точки соответствующие уравнениям, можно будет подобрать оптимальное решение для использования сырья и времени.

Графический метод удобно применять для двухмерных задач, но его невозможно использовать при решениях, связанных с размерностью, превышающей три. При этом во всех алгоритмах оптимальный результат принимается допустимым базисному. Симплекс-метод же является вычислительной процедурой, использующей принятое положение, описываемое в алгебраической форме.

Симплекс-метод при базисном решении

Впервые способ был изложен Данцигом в книге «Линейное программирование, его обобщения и применения», изданной на русском языке в 1966 году. Эта теория основывалась на вычислительной процедуре и представлялась в виде стандартных алгебраических форм. Основное направление метода заключается в указании способа нахождения опорного решения, переходе к другому, более оптимальному расчёту и определении критериев, позволяющих остановить перебор опорных вариантов.

Алгоритм решения задачи линейного программирования симплекс методом следующий:

  1. Свести поставленную задачу к канонической форме путём переноса свободных членов в правую часть и ввода дополнительных переменных. В случае отрицательных переменных неравенство умножается на -1. Если в записи используется знак «меньше или равно», переменная используется положительная, в противном случае — отрицательная.
  2. В зависимости от количества вводимых значений все переменные принимаются за основные. Их необходимо выразить через неосновные и перейти к базовому решению.
  3. Через неосновные переменные выражается функция цели.
  4. Если при решении отыскивается ответ с максимумом или минимумом линейной формы и все неосновные переменные получаются только положительными, то задача считается выполненной.
  5. Если найденный максимум (минимум) линейной формы в функции имеет одну или несколько неосновных переменных с отрицательными коэффициентами, необходимо перейти к новому базисному решению.
  6. Из переменных, входящих в форму с отрицательными или положительными коэффициентами, выбирается наибольшая (по модулю) и переводится в основные.

Другими словами, указывается оптимальное опорное решение, способ перехода от одного нахождения ответа к другому, варианты улучшения расчётов. После нахождения первоначального решения с «единичным базисом» вычисляется оценка разложения векторов по базису и заполняется симплексная таблица.

В тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи, используют метод с искусственным базисом. Это симплекс-метод с так называемой М-задачей (ММЭ), решаемый способом добавления к левой части системы уравнений искусственных единичных векторов. При этом новая матрица должна содержать группу единичных линейно-независимых векторов.

Двухфазный способ

Двойственный метод используется при анализе задач линейного программирования, записанного в форме основной задачи. При этом среди векторов, m уравнений, составленных из коэффициентов, должны быть единичные. Такой метод можно использовать, когда свободные члены уравнений являются любыми числами.

Например, существует ограниченность, описываемая функцией:

Читать еще:  Айтюнс выдает ошибку 4013

F = C 1 X 1+ C 2 X 2+…+ CnXn. Используется условие, что Х1Р1+Х2Р2+…+Х(m +1) P (m +1)+ +… XnPn = Р0, где Х j больше либо равно 0 (j =1, n). Принимается, что среди чисел bi (i =1, m) имеются отрицательные.

Решением будет выражение: х= (b1; b2;…; bm ;0;…;0), однако этот ответ не будет разрешать задание, так как к нему могут относиться и отрицательные числа. Так как векторы Р1, Р2… Рм единичные, то каждый из них можно описать линейной областью, состоящей из них же. При этом коэффициентами разложения векторов Рj по области будут числа: Xij = aij (i =1, m; j =1, n) по модулю.

Выражение х= ( b1; b2;…; bm ;0;…;0) определяется базисом. Называют его псевдоплан. Считается, что если дельта j больше либо равна нулю, то для любого: j ( j =1, n ) по модулю. В то же время если в псевдоплане с находимым базисом существует хотя бы одно отрицательное число, то тогда задача вообще не будет иметь планов. Но когда для этих отрицательных чисел верно, что аij меньше нуля, то можно будет перейти к новому псевдоплану.

Объяснение псевдоплана помогает построить алгоритм двойственного метода. Если взять за основу х = (b1; b2;…; bm ;0;…;0) и представить это выражение псевдопланом, то, учитывая исходные данные, можно составить симплекс-таблицу. В ней часть элементов будет отрицательная. Так как дельта j должна быть больше либо равна нулю, то при отсутствии таких чисел в таблице уже будет записан оптимальный план. В обратном случае выбирается по модулю наибольшее из чисел с минусом.

Принцип решения задачи включает следующее:

  • нахождение псевдоплана;
  • проверка его на оптимальность;
  • выбор разрешающей строки путём нахождения абсолютной величины отрицательного числа, отношения элементов (m+1) и соответствующей им строке;
  • нахождение нового псевдоплана.

Если анализ оптимален, считается, что найдено верное решение. В другом случае устанавливается неразрешимость задачи либо составляется новый псевдоплан. Делается это в результате пересчёта табличных данных, например, методом Жордана-Гаусса.

Пример задачи

Использование метода линейного программирования распространено в решениях транспортных задач. Он помогает в целевых расчётах и нужен для минимизации затрат в условиях ограниченной грузоподъёмности и времени обслуживания заказчиков.

Задачи линейного программирования (ЗЛП) позволяют выбрать оптимальную загрузку при перемещении какого-либо товара из одних мест в другие. Во вводных данных указывается число пунктов отправления (м) и количество мест назначения (n). Первые обозначаются как А1, А2…Ам, а вторые – В1, В2…Вn. За аi принимается объём продукции на складе, а bi – потребность. Затраты на перевозку с i пункта в j обозначаются Сij.

Главная задача — составить план таким образом, чтобы общая стоимость была минимальна. Пусть дано четыре песчаных карьера, с которых необходимо поставить песок на четыре склада. При этом осуществляться перевозки должны за определённую стоимость. Составляем таблицу.

Записываем уравнение ограничения. Сумма всего перевезённого песка с первого карьера должна быть меньше или равна 140. Поэтому можно записать: x11+x12+x12+x14+T1 = 140, где Т1 переменная для хранения остатка. Сумма ограничений будет записана как х11+х21+х31 =115. Аналогичные уравнения составляют и для оставшихся карьеров.

Теперь формируют матрицу, на основании которой с помощью свойства матриц ищется единичный базис. Например, вычесть из одной строки другую. Все отрицательные значения последнего столбца убирают. Для этого из каждой строки вычитают наименьшее значение, а последнее отрицательное число умножают на -1. Теперь составляют подробную симплекс-таблицу, где:

  • A0 – последний столбец из матрицы;
  • Сб – стоимость перевозок;
  • Х11, Т3 – данные из полученной матрица.

В последней строчке прямоугольника проставляют сумму произведений Сб на этот столбец и вычитают значение суммы перемножения Сб с А0. Делают дополнительное вычисление. Для каждой строки А0 делят на выделенное число, ищут наименьший результат и умножают его на положительные числа из последней строки.

Наибольшее число определяется пересечением ранее выбранных значений, на базе которых создают новый базис. После в соответствии с единичными базисами меняют Сб и Хб. Операцию повторяют до тех пор, пока не исчезнут все положительные числа из последней строки. Заполняют новую таблицу.

Расчёт в Excel

Для включения пакета анализа в программе необходимо перейти в раздел «Параметры» и выбрать строчку «Перейти». В новом окне найти строчку «Пакет анализа», кликнуть по ней и нажать кнопку ОК.

Затем понадобится загрузить и открыть шаблон для проверки в Excel. Используя манипулятор типа «мышь» или клавиатуру, выбрать ячейку G4 и выполнить команду «Сервис/Поиск решения». Далее указать исходные данные, а после нажать кнопку «Выполнить».

Полученное решение можно представить в форме отчёта, содержащего:

  1. Результаты – содержит информацию об исходных и конечных значениях целевой и влияющих ячеек, дополнительные сведения об ограничениях.
  2. Устойчивость — отчёт, включающий данные о чувствительности решения к малым изменениям.
  3. Пределы – включают исходные и конечные значения, а также верхние и нижние границы значений, которые принимают влияющие ячейки при введённых ограничениях.

Онлайн-сервис для чайников

Метод решения относится к высшей математике, поэтому в нём довольно трудно разобраться даже подготовленному человеку, не говоря уже о чайнике. Существует некоторое количество сайтов с подробным онлайн-решением методом симплекса. На таких сервисах предлагается ввести количество переменных и строк (ограничений). А далее просто заполнить симплекс-таблицу и нажать расчёт. Причём при необходимости вводимые данные можно править, тем самым видеть, как изменяется результат от изменения исходной информации.

Удобным является ещё и то, что обычно на сайтах предлагается создать шаблон решения в Excel или Maple. Решаться любая задача будет почти мгновенно. Подробно можно выполнить расчёт онлайн-калькулятор по методу симплекса на следующих сайтах:

  1. «Семестр» (semestr.ru).
  2. «Мир математики» (matworld.ru).
  3. «Высшая математика» (math-pr.com).
  4. «Матзона» (mathzone.ru).
  5. «Контрольная работа» (kontrolnaya-rabota.ru).

Выполнить расчёт с помощью онлайн-сервисов сможет любой. При этом вероятность ошибки в ответе стремится к нулю. Тем более что для решения задачи даже необязательно знать принцип симплекс-метода.

Ссылка на основную публикацию
Adblock
detector